Exercises EMGMT: Algorithmic Analysis

Note: All logarithms have base 2 .

1. What is the sum of all even numbers from 0 to $2 n$, for any integer $n>0$?
2. Count the number of primitive operations that are performed in each of the two algorithms below.
(a) Algorithm arrayMax (A,n):

Input: An array A storing $n \geq 1$ integers.
Output: The maximum element in A.

```
currentMax \(\leftarrow \mathrm{A}[0]\)
for \(i \leftarrow 1\) to \(n-1\) do
    for \(j \leftarrow i\) to \(n-1\) do
        if \(\mathrm{A}[i]>\mathrm{A}[j]\) then
            if \(\mathrm{A}[i]>\) currentMax then
                currentMax \(\leftarrow \mathrm{A}[i]\)
```

return currentMax
(b) Algorithm weird (A, n):

Input: An array A storing $n \geq 1$ integers.
Output: An array F storing $n \geq 1$ integers.

```
for \(i \leftarrow 1\) to \(n\) do
    \(\mathrm{F}[i] \leftarrow 0\)
    \(j \leftarrow i\)
    while \(j \leq n\) do
            for \(k \leftarrow 0\) to 4 do
            \(\mathrm{F}[i] \leftarrow \mathrm{F}[i]+\mathrm{A}[j+k]\)
        \(j \leftarrow 2 \cdot j\)
return F
```

3. For each of the items below, find the smallest $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$:
(a) n^{3} is greater than $4 n^{2}+60 n$,
(b) $8 n \log (n)$ is smaller than $2 n^{2}$,
(c) 2^{n} is greater than n^{4}.
4. Give a $c>0$ and an integer $n_{0} \geq 1$ such that, for all $n \geq n_{0}$:
(a) $40 n^{2}+120 \leq c n^{3}$,
(b) $16 n \log \left(n^{2}\right) \leq c n^{2}$,
(c) $\frac{1}{10} 2^{n} \geq c n^{4}$.
5. Give a function $f(n)$ such that $22 n^{4} \log (n)+130 \log ^{2}(n)$ is $\Theta(f(n))$.
6. Order the following functions by asymptotic growth rate:

$$
\begin{array}{ccc}
4 n \log (n)+2 n & 2^{10} & 2^{\log (n)} \\
3 n+100 \log (n) & 4 n & 2^{n} \\
n^{2}+10 n & n^{3} & n \log (n)
\end{array}
$$

7. Prove:
(a) $2 n^{3}+9 n^{2}$ is $O\left(n^{3}\right)$
(b) $(n \log n) / 8$ is $\Omega(n \log n)$
(c) $2^{n+2}-n$ is $\Theta\left(2^{n}\right)$
8. Prove or disprove: if $d(n)$ is $O(f(n))$, then $\operatorname{ad}(n)$ is $O(f(n))$, for any constant $a>0$.
9. Prove or disprove: if $d(n)$ is $O(f(n))$ and $e(n)$ is $O(g(n))$, then $d(n)-e(n)$ is $O(f(n)-g(n))$.
10. What are the running times of the algorithms in exercises 2(a) and 2(b) in big-Oh-notation?
